

QUANTUM SCIENTIFIC IMAGING

500, 600, and RS Series CCD Imaging Cameras

QSI Linux API
Reference v7.2

Revision Date: 3 December 2013 10:15 AM

Volume

1

L I N U X

API Reference Manual

Quantum Scientific Imaging, Inc.
12 Coteau Dr.

Poplarville, MS 39470
Phone 888.774.4223 • Fax 888.774.4223

Disclaimer:

Quantum Scientific Imaging, Inc. assumes no liability for the use of the information contained in this document or the software for which is describes. The
user assumes all risks. There is no warranty of fitness for a particular purpose, either express or implied.

The information contained in this document is assumed to be correct, but in no event shall Quantum Scientific Imaging, Inc. be held responsible for
typographic errors or changes to the software not reflected in this document.

The specifications in this document are subject to change without notice.

Support:

The QSI Linux API development specification is provided as a courtesy to our customers, and comes without warranty of fitness for any purpose or
application, either express or implied. The user assumes all risk for the use of the information in this document and the software it describes.

Copyright 2007, 2008, 2009, 2010, 2011, 2012, 2013 Quantum Scientific Imaging, Inc.
All rights reserved.

All trademarks mentioned in this document are the property of their respective owners, and are used herein solely for informational purposes only.

A P I R E F E R E N C E

1

Introduction

Using the QSI Linux API to control your QSI camera

he QSI Linux API provides a programming interface on Linux platforms to capture images
and control QSI cameras using the C++ programming language.

The QSI Linux API exposes a QSI Camera object for interacting with the camera. The
application calls methods on the object to perform various actions, such as starting an exposure. The
camera object provides get_ and put_ property methods to control information about the camera that
can be retrieved or set to a new value.

How to Use the QSI Camera Linux API

Requirements

The API requires Linux kernel 2.6 or beyond and is fully tested with 32 bit

Fedora 17. The kernel should be configured for USB support. You must also

install the user mode libftd2xx driver library for FTDI (NOT the VCP drivers)

or the open source libftdi driver library, and configure the QSI build to use

which ever driver library you choose.

The libftd2xx driver library is certified and supported by FTDI. The open
source solution is preferred in cases where the release is built on platforms not
supported by the FTDI libftd2xx drivers. You may want to try both libraries
(one at a time) and see which version best suits the needs of your application.

For more information, see:

http://www.libusb.org/

http://www.ftdichip.com/Drivers/D2XX.htm

 http://www.intra2net.com/en/developer/libftdi/download.php

Chapter

1

T

http://www.libusb.org/
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.intra2net.com/en/developer/libftdi/download.php

 2

In order for the api to be used by users without root privileges, the raw

USB devices (/dev/bus/usb/*) must be configured for the

appropriate user read/write permissions. See Appendix A in this document,

and the udev manual pages for further information.

Installation

Insure that the kernel is configured for USB support and the device permissions are correct. Connect the
QSI camera to AC power and connect the USB cable from the camera to an available USB port on the
computer. Use usbview (available at http://www.kroah.com/linux-usb/) or lsusb to verify proper USB
installation.

With root permissions, select one of the two options below:

If you choose the FTDI LIBFTD2XX driver library, download, modify, compile, and install
libftd2xx from FTDI.

 (Available at: www.ftdichip.com)

Follow the installation instructions provided with the libftd2xx distribution. You must install
version 1.1.12 or later. Insure no earlier versions are installed. Look in /usr/lib or /usr/local/lib,
etc. for prior installations.

Briefly:

As user root:

Extract and install the driver files.

tar –xvf libftd2xx1.1.12.tar.gz

The extraction process should create a directory call ftd2xx1.0.4

cd ftd2xx.1.1.12

Follow the installation instructions in the README.DAT file:

Installation:

1. unzip and untar the file given to a suitable directory

tar -xvf libftd2xx1.1.12.tar

2. Change directory to the required architecture subdirectory, build/i386 for 32-bit or build/x86_64
for 64-bit.

3. As root user copy the following files to /usr/local/lib
cp libftd2xx.so.1.1.12 /usr/local/lib

3. Change directory to /usr/local/lib

http://www.kroah.com/linux-usb/
http://www.ftdichip.com/

 3

cd /usr/local/lib

4. make symbolic links to these files using the following commands:
ln -s libftd2xx.so.1.1.12 libftd2xx.so

5. Change directory to /usr/lib
cd /usr/lib

6. make symbolic links to these files using the following commands:
ln -s /usr/local/lib/libftd2xx.so.1.1.12 libftd2xx.so

This completes the FTDI libftd2xx driver installation.

 4

If you chose the open source drivers, install the libftdi library.

See http://www.intra2net.com/en/developer/libftdi/download.php for
download and installation instructions. You must load version 0.20 or later. .
Insure no earlier versions are installed. This release requires libusb 0.1.

 Look in /usr/lib or /usr/local/lib, etc. for prior installations of libftdi. Do not
install libftdi-1.0, as this not source code compatible with libftdi-0.1.

This completes the FTDI USB driver library installation.

If you have problems with this check with usbview or lsusb to check the usb file
system is mounted properly.

Other problems will be related to the ftdi_sio driver loading. You must unload
this driver (and usbserial) if it is attached to your device ("rmmod ftdi_sio" and
"rmmod usbserial" as root user).

http://www.intra2net.com/en/developer/libftdi/download.php

 5

Now install the QSI API release:

Extract the release files from the qsiapi tar archive.

tar –xvf qsiapi.7.0.x.tar

(where x in 7.0.x.tar.gz is the current build number)

Configure the release for the ftdi driver of your choice:

The release comes configured for the libftdi open source driver library. If you
wish to use the FTDI supplied libftd2xx driver library, you must re-configure
the build using the –-enable-libftd2xx option on the configure command. Note:
the configure command will default to libftdi if no option is provided.

Run the GNU build tools:

In the extracted qsiapi.6.2.x directory:

If you chose the libftdi drivers:

./configure –-enable-libftdi

make all

make install

if you chose the libftd2xx drivers:

./configure –-enable-libftd2xx

make all

make install

Confirm the installation of the header and library files.

The include files qsiapi.h and QSIError.h are installed in /usr/local/include.

The library files libqsiapi.so, libqsiapi.a, etc. are installed in /usr/local/lib.

Run ldconfig for the newly installed libraries:

cd /usr/local/lib

ldconfig /usr/local/lib

Confirm that all libraries are loaded and the system is properly configured.

./src/qsiapitest

qsiapitest first displays the version of the api. If there is a QSI camera connected to the system, it
will execute a series of command to exercise the camera. See the qsiapitest.cpp source code for
further details.

 6

Troubleshooting:

If you have problems with the installation steps above, first use usbview or lsusb to confirm that the USB
file system is mounted properly and the QSI camera is connected to the system.

Some problems may be related to the ftdi_sio driver loading. You must unload this driver (and usbserial)
if it is attached to your device ("rmmod ftdi_sio" and "rmmod usbserial"as root user).

Insure that the user running the api has read/write access to the camera usb raw device. Check the
permissions in /dev/bus/usb/XXX/YYY, where XXX is a hub number and YYY is the device number
obtained from lsusb.

 7

CCD Camera Supporting Information

CCD Imager Geometry

The CCD imager geometry is organized in rows and columns. The number of columns is the number of
pixels in the image in the X (horizontal) direction, starting from the left of the image. The number of
rows is the number of pixels in the Y (vertical) direction, starting at the top.

The API provides the total number of columns as the property CameraXSize and the total number of
rows as the property CameraYSize. These properties are valid only when the camera is in the connected
state.

The frame to be captured is defined by four properties, StartX, StartY, which define the upper left corner
of the frame, and NumXand NumY which define the binned size of the frame.

Binning pixels combines CCD pixels into groups with each group representing one image pixel.

Restrictions on binning are:

The properties BinX and BinY specify the number of pixels per bin for each axis. If CanAsymmetricBin
is False, BinX must equal BinY.

MaxXBin and MaxYBin specify the maximum number of pixels per bin allowed by the camera for each
axis. Therefore, BinX <= MaxXBin and BinY <= MaxYBin.

The total number of pixels in an image frame must not exceed the CCD dimension. Therefore, (StartX +
NumX) * BinX <= CameraXSize and (StartY + NumY) * BinY <= CameraYSize

Shutterless Cameras

The second parameter in StartExposure (Duration, Light) determines the shutter state during exposure.
If the Light argument is true, the shutter is opened during the exposure period. If the property
HasShutter is false, the Light parameter is ignored and the shutter is always in the open state.

Camera with Filter Wheels

Some QSI camera models contain an integral filter wheel. The property HasFilterWheel will return true if
the camera contains an internal filter wheel. This property will return false if the camera has no internal
wheel and is not affected by the existence of an external (third party) filter wheel.

Programming notes

Programs using the API should include the header files qsiapi.h and QSIError.h which are

normally installed in /usr/local/include. Add –I/usr/local/include to your compiler

options if the /usr/local/include directory is not in you default include search path.

 8

Programs using the API must link to the libqsiapi library which is normally installed in

/usr/local/lib. Use the –lqsiapi option with the linker to properly build an executable that

uses the api. Add the -L/usr/local/lib option to direct the linker to the library directory.

QSICamera object errors are reported either by throwing an exception or by testing the method return
value. Throwing exceptions on errors can be enabled by setting put_EnableStructured Exceptions(true).
If this property is set to false, methods will not throw an exception on error. In either case, camera
methods will return an int error code.

For example:

double eGain;

int result;

QSICamera cam;

cam.put_UseStructuredErrorExceptions(true);

try

{

result = cam.get_ElectronsPerADU(eGain;

}

catch (std::runtime_error& err) {/*handle error*/ }

—or—

cam.put_UseStructuredErrorException(false):

result = cam.get_ElectronsPerADU(eGain);

if (result != 0) { /*handle error*/}

 9

API Reference

QSICamera properties and methods

Properties

AntiBlooming
BinX
BinY
CameraGain
CameraState
CameraXSize
CameraYSize
CanAbortExposure
CanAsymmetricBin
CanGetCoolerPower
CanPulseGuide
CanSetCCDTemperature
CanSetGain
CanStopExposure
CCDTemperature
Connected
CoolerOn
CoolerPower
Description
DriverInfo
ElectronsPerADU
EnableShutterStatusOutput
FanMode
FilterCount

FilterOffset
FlushCycles
FullWellCapacity
HasFilterWheel
HasFIlterWheelTrim
HasShutter
HeatSinkTemperature
HostTimedExposure
ImageArray
ImageArraySize
ImageReady
IsMainCamera
IsPulseGuiding
LastError
LastExposureDuration
LastExposureStartTime
LEDEnabled
ManualShutterMode
ManualShutterOpen
MaxADU
MaxBinX
MaxBinY
ModelNumber
Name

Named Filter Wheels

Names
NumX
NumY
PixelMask
PixelSizeX
PixelSizeY
Position
PowerOfTwoBinning
PreExposureFlush
ReadoutSpeed
SelectCamera
SelectedFilterWheel
SerialNumber
SetCCDTemperature
ShutterMode
ShutterPriority
SoundEnabled
StartX
StartY
UseStructuredExceptions

Note: Properties associated with named filter wheels are documented in the section “Named Filter
Wheels”, not under the individual property names.

Methods

AbortExposure
PulseGuide
StartExposure
StopExposure
External Trigger Input

Chapter

2

 10

Camera Properties

AntiBlooming

Property

int QSICamera.put_AntiBlooming (enum AntiBloom)

 int QSICamera.get_AntiBloom(enum AntiBloom *)

Syntax

int result = cam.put_AntiBlooming(x);

Exceptions

Throws an exception if the AntiBlooming property is unsupported, if the camera is not
connected, or if the command is unsuccessful. This setting is stored in the .QSIConfig file and
will be maintained between camera connections.

Examples:

QSICamera cam;

//

// example with UseStructedExceptions == false

//

int result = cam.put_AntiBlooming(QSICamera::AntiBloomNormal);

if (result != 0)

{

//handle error//

}

Remarks

Controls the amount of anti-blooming in anti-blooming cameras.

Symbolic Constants

The symbolic values for AntiBloom are:

 Constant Value

 AntiBloomNormal 0

 AntiBloomHigh 1

 11

BinX

Property

int QSICamera.put_BinX (short)

 int QSICamera.get_BinX(short*)

Syntax

int result = cam.put_BinX(x);

int result = cam.get_BinX(&x);

Exceptions

If exceptions are enabled, throws an exception for illegal binning values

Examples:

QSICamera cam;

short binX;

//

// example with UseStructedExceptions == false

//

int result = cam.get_BinX(&binX);

if (result != 0)

{

//handle error//

}

//

// Example with UseStructedExceptions == true

//

try

{

cam.put_BinX(2);

}

catch (std::runtime_error& err)

{

 cout << err.what();

}

Remarks

Gets or sets the binning factor for the X axis in parameter 1. Defaults to 1 when the camera link is
established. Note: the driver does not check for compatible sub-frame values when this value is set;
rather they are checked upon issuance of the StartExposure method.

 12

BinY

Property

int QSICamera.put_BinY (short)

int QSICamera.get_BinY (short*)

Syntax

int result = cam.put_BinY (y);

int result = cam.get_BinY(&y);

Exceptions

If exceptions are enabled, throws an exception for illegal binning values

Examples

QSICamera cam;

short binY, binX;

int results;

results = cam.get_BinY(&binY);

results = cam.put_BinY(binX);

Remarks

Gets or sets the binning factor for the Y axis in parameter 1. Also returns the current value. Defaults to
1 when the camera link is established. Note: The driver does not check for compatible sub-frame values
when this value is set; rather they are checked upon issuance of the StartExposure method.

 13

CameraGain

Property

int QSICamera.put_CameraGain (enum CameraGain)

 int QSICamera.get_CameraGain(enum CameraGain *)

Syntax

int result = cam.put_CameraGain(QSICamera::CameraGainHigh);

Exceptions

Throws an exception if the CameraGain property is unsupported, if the camera is not
connected, or if the command is unsuccessful. This setting is stored in the .QSIConfig file and
will be maintained between camera connections.

Examples:

QSICamera cam;

//

// example with UseStructedExceptions == false

//

int result = cam.put_CameraGain(QSICamera::CameraGainLow);

if (result != 0)

{

//handle error//

}

Remarks

Controls the amount of camera gain in adjustable gain cameras. Sets the gain of the camera to
maximize dynamic range. High gain is the default and provides the greatest sensitivity. Low gain is
useful when binning an image where the binned pixels contain more electrons than a normal un-
binned pixel. Sensitivity is lower, but the full dynamic range of the binned image can be captured.
High = 0.75e-/ADU, Low = 1.5e-/ADU. When set to Auto, the camera will use high gain if x and y
bin equals one, and low gain in all other cases.

Symbolic Constants

The symbolic values for AntiBloom are:

 Constant Value

 CameraGainHigh 0

 CameraGainLow 1

 CameraGainAuto 2

 14

CameraState

Property

int QSICamera.get_CameraState (QSICamera::CameraState*)

Syntax

results = cam.get_CameraState(&state);

Exceptions

If exceptions are enabled, throws an exception if the camera status is unavailable.

Examples

int results;

QSICamera::CameraState state;

results = cam.get_CameraState(&state);

if (results == 0 && state == CameraIdle)

{

return;

}

Remarks

Returns one of the following status information values in parameter 1:

Value State Meaning

0 CameraIdle At idle state, available to start

exposure

1 CameraWaiting Exposure started but waiting (for

shutter, trigger, filter wheel, etc.)

2 CameraExposing Exposure currently in progress

3 CameraReading CCD array is being read out (digitized)

4 CameraDownload Downloading data to PC

5 CameraError Camera error condition serious enough to

prevent further operations (link fail,

etc.).

 15

CameraXSize

Property

int QSICamera.get_CameraXSize(long)

Syntax

result = cam.get_CameraXSize(&size);

Exceptions

If exceptions are enabled, thows exception if the value is not known.

Example

long size;

int results;

results = cam.get_CameraXSize(&size);

Remarks

Returns the width of the CCD sensor in un-binned pixels in parameter 1.

 16

CameraYSize

Property

int QSICamera.get_CameraYSize (long*)

Syntax

result = cam.get_CameraYSize(& size);

Exceptions

If exceptions are enabled, throws exception if the value is not known.

Examples:

long size;

int results;

results = cam.get_CameraYSize(&size);

Remarks

Returns the height of the CCD sensor in un-binned pixels in parameter 1.

 17

CanAbortExposure

Property

int QSICamera.get_CanAbortExposure (bool*)

Syntax

 result = QSICamera.get_CanAbortExposure(& canAbort);

Exceptions

None.

Examples:

QSICamera cam;

bool canAbort;

cam.get_CanAbortExposure(&canAbort);

if (canAbort)

cam.AbortExposure ();

Remarks

Returns true in parameter 1 if the camera can abort exposures; false if not.

 18

CanAsymmetricBin

Property

int QSICamera.get_CanAsymmetricBin (bool*)

Syntax

int result =cam.get_CanAsymmetricBin(&canAsymBin);

Exceptions

If exceptions are enabled, throws an exception if the value is not known.

Examples:

try

{

bool canAsymBin;

cam.get_CanAsymmetricBin(&canAsymBin);

if (canAsymBin)

{

cam.BinX = 1;

cam.BinY = 2;

}

}

catch (std::runtime_error& err)

{

}

Remarks

If parameter 1 is true, the camera can have different binning on the X and Y axes, as determined by BinX
and BinY. If false, the binning must be equal on the X and Y axes.

 19

CanGetCoolerPower

Property

int QSICamera.get_CanGetCoolerPower (bool*)

Syntax

result =cam.get_CanGetCoolerPower(&canGetPower);

Exceptions

None

Examples:

bool canGetPower;

int results;

results = cam.get_CanGetCoolerPower(&canGetPower);

if (canGetPower)

{

 int power;

 cam.get_coolerPower(&power);

}

Remarks

If parameter 1 is true, the camera's cooler set point can be adjusted and the camera can return the cooling
power level. If false, the camera either uses open-loop cooling or does not have the ability to adjust
temperature from software.

 20

CanPulseGuide

Property

int QSICamera.get_CanPulseGuide (bool*)

Syntax

results = cam.get_CanPulseGuide(&canGuide);

Exceptions

None

Examples:

bool canGuide;

int results;

results = cam.get_CanPulseGuide(&canGuide);

if (canGuide)

{

results = cam.PulseGuide (guideWest, 10);

}

Remarks

Returns true in parameter 1 if the camera can send auto-guider pulses to the telescope mount; false if not.
(Note: this does not provide any indication of whether the auto-guider cable is actually connected.)

 21

CanSetCCDTemperature

Property

int QSICamera.get_CanSetCCDTemperature (bool*)

Syntax

results = cam.get_CanSetCCDTemperature(&canSetTemp);

Exceptions

None

Examples:

bool canSetTemp;

int results;

results = cam.get_CanSetCCDTemperature(&canSetTemp);

if (canSetTemp)

{

cam.put_SetCCDTemperature (-10.7);

}

Remarks

If parameter 1 is true, the camera's cooler set point can be adjusted. If false, the camera either uses open-
loop cooling or does not have the ability to adjust temperature from software.

 22

CanSetGain

Property

int QSICamera.get_CanSetGain (bool*)

Syntax

int result =cam.get_CanSetGain(&canSetGain);

Exceptions

If exceptions are enabled, throws an exception if the value is not known.

Examples:

try

{

bool canSetGain;

cam.get_CanSetGain(&canSetGain);

if (canAsymBin)

{

cam.put_CameraGain(CameraGainHigh);

}

}

catch (std::runtime_error& err)

{

}

Remarks

 23

CanStopExposure

Property

int QSICamera.get_CanStopExposure (bool*)

Syntax

results = cam.get_CanStopExposure(&canStop);

Exceptions

If exceptions are enabled, throws an exception if not supported.

Examples:

bool canStop;

cam.get_CanStopExposure(&canStop);

if (canStop)

{

cam.StopExposure();

}

Remarks

Some cameras support StopExposure, which allows the exposure to be terminated before the exposure
timer completes, but will still read out the image. Returns true in parameter 1 if StopExposure is
available, false if not.

 24

CCDTemperature

Property

int QSICamera.get_CCDTemperature (double)

Syntax

results = cam.get_CCDTemperature(&temp);

Exceptions

If exceptions are enabled, throws an exception if data unavailable.

Examples:

double temp;

int results;

results = cam.get_CCDTemperature(&temp);

Remarks

Returns the current CCD temperature in degrees Celsius in parameter 1. Only valid if
CanSetCCDTemperature is true.

 25

Connected

Property

int QSICamera.put_Connected (bool*)

 int QSICamera.get_Connected(bool)

Syntax

result = cam.put_Connected(true);

result = cam.get_Connected (&connected);

Exceptions

If exceptions are enabled, throws an exception if unsuccessful.

Examples:

bool connected;

int result;

result = cam.get_Connected(&connected);

if (result == 0 && connected == false)

cam.put_Connected(true);

Remarks

Controls the link between the driver and the camera. Set parameter 1 to true to enable the link. Set false
to disable the link (this does not switch off the cooler). You can also read the property using the get_
method to check whether it is connected. The camera must be connected before using properties and
methods on the camera object that relate to camera capabilities.

 26

CoolerOn

Property

int QSICamera.put_CoolerOn (bool)

 int QSICamera.get_CoolerOn(bool*)

Syntax

result = cam.put_CoolerOn(true);

 result = cam.get_CoolerOn(*coolerOn);

Exceptions

If exceptions are enabled, throws an exception if not supported.

Examples:

bool coolerOn;

int result;

result = cam.get_CoolerOn(&coolerON);

if (result == 0 && coolerOn == false)

cam.put_CoolerOn (true);

Remarks

Turns on and off the camera cooler, and returns the current on/off state.

 27

CoolerPower

Property

int QSICamera.get_CoolerPower (double*)

Syntax

results = cam.get_CoolerPower(&power);

Exceptions

If exceptions are enabled, throws an exception if not supported by the camera.

Examples:

bool canGetPower;

int results;

results = cam.get_CanGetCoolerPower(&canGetPower);

if (canGetPower)

{

 double power;

 cam.get_CoolerPower(&power);

}

Remarks

Returns the present cooler power level, in percent in parameter 1. Returns zero if CoolerOn is false.

 28

Description

Property

int QSICamera.Description (std::string&)

Syntax

int results = cam.get_Description(desc);

Exceptions

If exceptions are enabled, throws an exception if description unavailable.

Examples:

try

{

std::string desc;

cam.get_Description(desc);

}

catch (std::runtime_error& err)

{

// No Description available from this device

}

Remarks

Returns a description of the camera model, such as manufacturer and model number in parameter 1.

 29

DriverInfo

Property

int QSICamera.get_DriverInfo (std::string&)

Syntax

results = cam.get_DriverInfo(info);

Exceptions

If exceptions are enabled, throws an exception if description unavailable.

Examples:

try

{

string info;

cam.DriverInfo(info);

}

catch (std::runtime_error& err)

{

}

Remarks

Returns revision information of the loaded driver in parameter 1.

 30

ElectronsPerADU

Property

int QSICamera.get_ElectronsPerADU (double*)

Syntax

int reault = cam.get_ElectronsPerADU(&eADU);

Exceptions

If exceptions are enabled, throws an exception if data unavailable.

Examples:

try

{

double eADU;

cam.get_ElectroncsPerADU(&eADU);

}

catch (std::runtime_error& err)

{

// ElectronsPerADU not available from this device

}

Remarks

Returns the gain of the camera in photoelectrons per A/D unit in parameter 1.

 31

EnableShutterStatusOutput

Property

int QSICamera.put_EnableShutterStatusOutput (bool*)

 int QSICamera.get_EnableShutterStatusOutput (bool)

Syntax

results = cam.put_EnableShutterStatusOutput (true);

results = cam.get_EnableShutterStatusOutput (&enabled);

Exceptions

If exceptions are enabled, throws an exception if unsuccessful.

Examples:

bool enabled;

int results;

results = cam.get_EnableShutterStatusOutput(&enabled);

if (results == 0 && enabled == false)

cam.put_EnableShutterStatusOutput(true);

Remarks

The guider port can be configured to provide a shutter open/close indication using one of the guider port
outputs. To enable this feature, the property EnableShutterStatusOutput should be set to true. In this
mode, the camera will use the “up” output (pin 2) to reflect the shutter state. The camera will pull pin 2
to the common pin 5 while the shutter is open.

The guider ports are opto isolated open collector outputs. Each output is capable of sinking 50ma, 50
VDC maximum. The common pin must be at ground potential and the “up” output must be pulled up
by an external resistor to V+.

This signal is meaningful only when the mechanical shutter is in start/stop mode (an exposure time of
greater than 300 milliseconds).

To disable this feature and re-enable guiding output, set the EnableShutterStatusOutput property to false.
The EnableShutterStatusOutput defaults to false on camera power up and is not saved at power off.

 32

FanMode

Property

int QSICamera.put_FanMode (enum FanMode)

int QSICamera.get_FanMode (enum & FanMode)

Syntax

results = cam.put_FanMode(fanQuiet);

Exceptions

Throws an exception if the FanMode property is unsupported, if the camera is not connected,
or if the command is unsuccessful. This setting is stored in the .QSIConfig file and will be
maintained between camera connections.

Examples:

try

{

cam.put_FanMode(fanQuiet);

}

catch (std::runtime_error& err)

{

}

Remarks

Controls the speed of the camera’s cooling fans.

Symbolic Constants

The symbolic values for FanMode are:

Constant Value Description

fanOff 0 Fans off

fanQuiet 1 Fans slow speed, full if cooling requires.

fanFull 2 Fans full speed.

 33

FlushCycles

No longer supported. See PreExpsoureFlush.

 34

FullWellCapacity

Property

int QSICamera.get_FullWellCapacity (double*)

Syntax

int results = cam.get_FullWellCapacity(&fwc);

Exceptions

If exceptions are enabled, throws an exception if data unavailable.

Examples:

try

{

double fwc;

cam.get_FullWellCapacity(&fwc);

}

catch (std::runtime_error& err)

{

// FullWellCapacity not available from this device

}

Remarks

Returns the full well capacity of the camera in electrons, at the current camera settings in parameter 1.

 35

HasFilterWheel

Property

int QSICamera.get_HasFilterWheel (bool*)

Syntax

int result = cam.get_HasFilterWheel(hasFilters);

Exceptions

If exceptions are enabled, throws an exception if no camera is connected.

Examples:

int results;

bool hasFilters;

results = cam.get_HasFilterWheel(&hasFilters);

if (results == 0 && hasFilters)

{

 cam.put_Position(2);

}

Remarks

If parameter 1 is true, the camera has an internal filter wheel. If false, the camera does not have an internal
filter wheel.

 36

HasShutter

Property

int QSICamera.get_HasShutter (bool*)

Syntax

int result = cam.get_HasShutter(&hasShutter);

Exceptions

If exceptions are enabled, throws an exception if no camera is connected.

Examples:

int results;

bool hasShutter;

results = cam.get_HasShutter(&hasShutter);

if (hasShutter)

{

}

Remarks

If parameter 1 is true, the camera has a shutter. If false, the camera does not have a shutter. If there is no
shutter, the StartExposure command will ignore the Light parameter.

 37

HeatSinkTemperature

Property

int QSICamera.get_HeatSinkTemperature (double*)

Syntax

results = cam.get_HeatSinkTemperature(temp);

Exceptions

If exceptions are enabled, throws an exception if the camera is not connected.

Examples:

double temp;

results = cam.get_HeatSinkTemperature(&temp);

Remarks

Returns the current heat sink temperature (The ambient air temperature as it enters the fans on the
heatsink) in degrees Celsius in parameter 1. Only valid if CanSetCCDTemperature is true. Will return 0
for cameras without heat sink sensors.

 38

HostTimedExposure

Property

int QSICamera.put_HostTimedExposure(bool)

Syntax

int result = cam.put_HostTimedExposure(true);

Exceptions

Throws an exception if the HostTimedExposure property is unsupported, if the camera is not
connected, or if the command is unsuccessful.

Examples:

//

// example with UseStructedExceptions == false

//

int result = cam.put_HostTimedExposure(true);

if (result != 0)

{

//handle error//

}

Remarks

On Interline Transfer CCDs, like the KAI-2020M in the QSI 520i, every other column of the CCD is
masked to prevent light from striking the underlying pixels. To read an image from an Interline Transfer
CCD, the active pixels are transferred to the masked pixels and then shifted out of the CCD.

In normal operation, the active pixels are “flushed” at the beginning of an exposure in order to remove
any charge that had built up in the pixels since the last exposure. “HostTimedExposure” mode
eliminates this flush allowing you to begin integrating the next exposure while the previous exposure is
being transferred to the computer.

This special mode is generally only useful when taking a rapid sequence of short exposures. If significant
time is allowed to pass between exposures in this mode, dark current will likely saturate the CCD. With
“HostTimedExposure” mode enabled, it is possible to take small subframes at a rate of multiple images
per second, while capturing the majority of the light striking the CCD. This can be useful for some rapid
guiding applications.

Note: The “Pre-Exposure Flush” options in the Advanced Dialog box are ignored when in
“HostTimedExposure” mode. The only flushing that occurs in this mode is to flush the masked
columns prior to transferring the image into them for reading by the computer.

 39

ImageArray

Property

int QSICamera.get_ImageArray (unsigned short*)

--or--

 int QSICamera.get_ImageArray(double*)

Syntax

results = cam.get_ImageArray((unsigned short*)image);

Exceptions

If exceptions are enabled, throws an exception if data unavailable.

Examples:

 result = cam.StartExposure(.05, true);

 bool imageReady = false;

 result = cam.get_ImageReady(&imageReady);

 while(!imageReady)

 {

 usleep(5000);

 result = cam.get_ImageReady(&imageReady);

 }

 int x,y,z;

 result = cam.get_ImageArraySize(x, y, z);

 unsigned short* image = new unsigned short[x * y];

 result = cam.get_ImageArray((void*)image);

Remarks

Fills an array of unsigned shorts or doubles (depending on the arguments type) of size NumX * NumY
containing the pixel values from the last exposure. The application must inspect the get_ImageArraySize
parameters to determine the dimensions. Note: if NumX or NumY is changed after a call to
StartExposure it will have no effect on the size of this array.

The caller must test the property ImageReady and received a true result prior to using this method, to
insure that the transfer of the image from the camera is complete. Once the image is complete, the caller
should first call get_ImageArraySize to determine the required size of the image array.

 40

ImageArraySize

Property

int QSICamera.get_ImageArraySize (int& xsize, int& ysize, int& pixelsize)

Syntax

results = cam.get_ImageArraySize(xsize, ysize, pixelsize);

Exceptions

If exceptions are enabled, throws an exception if data unavailable.

Examples:

 result = cam.StartExposure(.05, true);

 bool imageReady = false;

 result = cam.get_ImageReady(&imageReady);

 while(!imageReady)

 {

 usleep(5000);

 result = cam.get_ImageReady(&imageReady);

 }

 int x,y,z;

 result = cam.get_ImageArraySize(x, y, z);

 unsigned short* image = new unsigned short[x * y];

 result = cam.get_ImageArray((void*)image);

Remarks

Returns the dimensions of the pending image in parameters 1, 2, and 3. Use this call to provide size
information when creating an array for transfer of the image data. The xsize and ysize parameters specify
the dimensions of the pending image in pixels units. The pixel size parameter is the size of each pixel
value in bytes. 500 series cameras always return a value of 2 for the pixel size.

 41

ImageReady

Property

int QSICamera.get_ImageReady (bool*)

Syntax

results = cam.get_ImageReady(&imageReady);

Exceptions

If exceptions are enabled, throws an exception if hardware or communications link error has
occurred.

Examples:

 result = cam.StartExposure(.05, true);

 bool imageReady = false;

 result = cam.get_ImageReady(&imageReady);

 while(!imageReady)

 {

 usleep(5000);

 result = cam.get_ImageReady(&imageReady);

 }

 int x,y,z;

 result = cam.get_ImageArraySize(x, y, z);

 unsigned short* image = new unsigned short[x * y];

 result = cam.get_ImageArray((void*)image);

Remarks

If parameter 1 is true, there is an image from the camera available. If false, no image is available and
attempts to use the ImageArray method will produce an exception or error.

 42

IsMainCamera

Property

int QSICamera.put_IsMainCamera (bool)

 int QSICamera.get_IsMainCamera(bool*)

Syntax

result = cam.put_IsMainCamera(true);

result = cam.get_IsMainCamera(&isMain);

Exceptions

If exceptions are enabled, throws an exception if the camera is connected when attempting to
set the property.

Examples:

try

{

bool isMain;

cam.get_IsMainCamera(isMain);

if (!isMain)

{

 cam.put_IsMainCamera(true);

}

}

catch (std::runtime_error& err) {}

Remarks

If parameter 1 is true, the camera is in the main camera role; if false, the camera is in the guider role. The
camera must be in the disconnected state prior to changing the camera role (i.e. when setting this
property).

 43

IsPulseGuiding

Property

int QSICamera.get_IsPulseGuiding (bool*)

Syntax

results = cam.get_IsPulseGuiding(&guiding);

Exceptions

If exceptions are enabled, throws an exception if hardware or communications link error has
occurred.

Examples:

bool guiding;

results = cam.get_IsPulseGuiding(&guiding)

if (results == 0 && guiding)

{

}

Remarks

If parameter 1 is true, pulse guiding is in progress.

 44

LastError

Property

int QSICamera.get_LastError (std::string&)

Syntax

results = cam.get_LastError(error);

Exceptions

If no error has occurred, the string “0x00000000: No Error” is returned.

Examples:

std::string error;

cam.get_LastError(error);

Remarks

Reports the last error condition reported by the camera hardware or communications link. The string
contains an error code and an error message.

 45

LastExposureDuration

Property

int QSICamera.get_LastExposureDuration (double*)

Syntax

result = cam.get_LastExposureDuration(time);

Exceptions

If exceptions are enabled, throws an exception if not supported or no exposure has been taken.

Examples:

double time;

int result;

try

{

result = cam.get_LastExposureDuration(&time);

}

catch(Exception err){}

Remarks

Reports the actual exposure duration in seconds (i.e. shutter open time) in parameter 1. This may differ
from the exposure time requested is StopExposure() was called (and is available on the camera).

 46

LastExposureStartTime

Property

int QSICamera.get_LastExposureStartTime (std::string&)

Syntax

result = cam.get_LastExposureStartTime(info);

Exceptions

If exceptions are enabled, throws an exception if not supported or no exposure has been taken.

Examples:

std:string time;

try

{

cam.get_LastExposureStartTime(time);

}

catch(std::runtime_error& err){}

Remarks

Reports the actual exposure start in the FITS-standard CCYY-MM-DDThh:mm:ss[.sss...] format.

 47

LEDEnabled

Property

int QSICamera.put_LEDEnabled (bool)

int QSICamera.get_LEDEnabled (bool &)

Syntax

 result = cam.get_LEDEnabled(enabled);

Exceptions

If exceptions are enabled, throws an exception if unsuccessful.

Examples:

bool enabled;

results = cam.get_LEDEnabled(enabled);

if (enabled == false)

cam.put_LEDEnabled(true);

Remarks

Enable or disable the camera status LED. The camera must be in the connected state. This setting is
recorded in the .QSIConfig file and will be maintained between connections to the device. This setting is
unique for each device serial number.

 48

ManualShutterMode

Property

int CCDCamera.put_ManualShutterMode (bool)

int CCDCamera.get_ManualShutterMode (bool *)

Syntax

result = CCDCamera.put_ManualShutterMode(true);

Exceptions

Throws an exception if the ManualShutterMode property is unsupported, if the camera is not
connected, or if the command is unsuccessful.

Examples:

bool enabled;

results = cam.get_ManualShutterMode(&enabled);

if (enabled == false)

cam.put_ManualShutterMode(true);

Remarks

Enables the manual control (using the API) of the mechanical shutter, independent of the
StartExposure command. See ManualShutterOpen for further details.

 49

ManualShutterOpen

Property

int CCDCamera.put_ManualShutterOpen (bool)

Syntax

result = CCDCamera.put_ManualShutterOpen(true);

Exceptions

Throws an exception if the ManualShutterOpen property is unsupported, if the camera is not
connected, or if the command is unsuccessful. .

Examples:

results = cam.put_ManualShutterOpen(true); //Open the shutter

results = cam.put_ManualShutterOpen(false); //Close the shutter

Remarks

Manually open (if set true) or closes (if set false) the mechanical shutter. The
ManualShutterMode must be set true before issuing ManualShutterOpen commands.

 50

MaxADU

Property

int QSICamera.get_MaxADU (long*)

Syntax

result = cam.get_MaxADU(&adu);

Exceptions

If exceptions are enabled, throws an exception if data unavailable.

Examples:

try

{

long adu;

cam.get_MaxADU(&adu);

}

catch (std::runtime_error& err) {}

Remarks

Reports the maximum ADU value the camera can produce in parameter 1.

 51

MaxBinX

Property

int QSICamera.get_MaxBinX (short*)

Syntax

result = cam.get_MaxBinX(&maxBinX);

Exceptions

If exceptions are enabled, throws an exception if data unavailable.

Examples:

short maxBinX;

result = cam.get_MaxBinX(&maxBinX);

Remarks

If AsymmetricBinning = false, returns the maximum allowed binning factor in parameter 1. If
AsymmetricBinning = true, returns the maximum allowed binning factor for the X axis in parameter 1.

 52

MaxBinY

Property

int QSICamera.get_MaxBinY (short*)

Syntax

result = cam.get_MaxBinY(&maxBinY);

Exceptions

If exceptions are enabled, throws an exception if data unavailable.

Examples:

short maxBinY;

result = cam.get_MaxBinY(&maxBinY);

Remarks

If AsymmetricBinning = false, parameter 1 equals MaxBinX. If AsymmetricBinning = true, returns the
maximum allowed binning factor for the Y axis in parameter 1.

 53

MaxExposureTime

Property

int QSICamera.get_MaxExposureTime (double *)

Syntax

result = cam.get_MaxExposureTime(&maxExp)

Exceptions

Throws an exception if data unavailable or if the camera is not connected.

Examples:

double maxExp;

result = cam.get_MaxExposureTime(&maxExp);

Remarks

Returns the maximum exposure time in seconds for the connected camera.

 54

MinExposureTime

Property

int QSICamera.get MinExposureTime (double *)

Syntax

result = cam.get_MinExposureTime(&minExp);

Exceptions

Throws an exception if data unavailable or if the camera is not connected.

Examples::

double minExp;

result = cam.get_MinExposureTime(&minExp;

Remarks

Returns the minimum exposure time in seconds for the connected camera.

 55

ModelNumber

Property

int QSICamera.get_ModelNumber (std::string&)

Syntax

result = cam.get_ModelNumber(model);

Exceptions

If exceptions are enabled, throws an exception if description unavailable

Examples:

try

{

std::string model;

cam.get_ModelNumber(model);

}

catch (std::runtime_error& err){}

Remarks

Returns the model number of the camera in parameter 1.

 56

Name

Property

int QSICamera.get_Name (std::string&)

Syntax

result = cam.get_Name(name);

Exceptions

If exceptions are enabled, throws an exception if description unavailable

Examples:

try

{

std::string name;

cam.get_Name(name);

}

catch (std::runtime_error& err) {}

Remarks

Returns the model name of the camera in parameter 1.

 57

Named Filter Wheels

Properties

 int QSICamera.get_HasFilterWheelTrim(bool* pVal);
 int QSICamera.get_FilterPositionTrim(std::vector<short> * pVal);
 int QSICamera.put_FilterPositionTrim(std::vector<short>);
 int QSICamera.get_FilterWheelNames(std::vector<std::string> * pVal);
 int QSICamera.get_SelectedFilterWheel(std::string * pVal);
 int QSICamera.put_SelectedFilterWheel(std::string newVal);
 int QSICamera.NewFilterWheel(std::string Name);
 int QSICamera.DeleteFilterWheel(std::string Name);

Syntax

 result = cam.get_HasFilterWheelTrim(&bHasTrim);
 result = cam.get_FilterPositionTrim(&vTrimVal);
 result = cam.put_FilterPositionTrim(vTrimVal);
 result = cam.get_FilterWheelNames(&vNames);
 result = cam.get_SelectedFilterWheel(&strName);
 result = cam. put_SelectedFilterWheel(“CYMKWheel”);
 result = cam.NewFilterWheel(“LRGBWHEEL”);
 result = cam.DeleteFilterWheel(“CYMKWheel”);

Exceptions

If exceptions are enabled, throws an exception if the camera is not in the connected state.

 58

Examples:

 cam.NewFilterWheel("WheelOne");

 cam.NewFilterWheel("WheelTwo");

 cam.NewFilterWheel("WheelThree");

 std::string WheelName;

 cam.get_SelectedFilterWheel(& WheelName);

 cam.put_SelectedFilterWheel("WheelOne");

 std::vector<std::string> Wheels;

 cam.get_FilterWheelNames(& Wheels);

 bool HasTrim = false;

 cam.get_HasFilterWheelTrim(& HasTrim);

 if (HasTrim)

 {

 std::vector<short> Trims;

 cam.get_FilterPositionTrim(& Trims);

 Trims[0] = 100;

 cam.put_FilterPositionTrim(Trims);

 }

 // Allocate arrays for filter names and offsets

 names = new std::string[filters];

 offsets = new long[filters];

 cam.get_Names(names);

 cam.get_FocusOffset(offsets);

 // change the name and offset of filter 1

 names[1] = "UV";

 offsets[1] = 100L;

 // Save the new names and offsets

 cam.put_Names(names);

 cam.put_FocusOffset(offsets);

 cam.DeleteFilterWheel("WheelOne");

 cam.DeleteFilterWheel("WheelTwo");

 cam.DeleteFilterWheel("WheelThree");

Remarks

Filter wheels can now be referenced by name, to track the individual settings of the filter name, focus
offset and trim setting on a per filter wheel basis. Filter wheel names are ascii character strings. The name
“Default” is reserved for system use, in the case of no user defined wheels.

 59

NumX

Property

int QSICamera.put_NumX (long)

int QSICamera.get_NumX (long*)

Syntax

result = cam.put_NumX(100);

 result = cam.get_NumX(&numX);

Exceptions

None

Examples:

long numX;

int result;

result = cam.get_NumX(&numX);

Remarks

Sets the sub-frame width. Also returns the current value in parameter 1. If binning is active, value is in
binned pixels. No error check is performed when the value is set. Defaults to CameraXSize.

 60

NumY

Property

int QSICamera.put_NumY (long)

int QSICamera.get_NumY (long*)

Syntax

result = cam.put_NumY(100);

 result = cam.get_NumY(&numY);

Exceptions

None

Examples:

long numY;

int result;

result = cam.get_NumY(&numY);

Remarks

Sets the sub-frame height. Also returns the current value in parameter 1. If binning is active, value is in
binned pixels. No error check is performed when the value is set. Defaults to CameraYSize.

 61

PixelMask

Methods / Classes

int QSICamera .get_PixelMask(std::vector<pixel> *)
int QSICamera .put_PixelMask(std::vector<pixel>)
int QSICamera .get_MaskPixels (bool *)

 int QSICamera.put_MaskPixels(bool)
class Pixel
{
public:
 Pixel(int x, int y){ this->x = x; this->y = y;}
 ~Pixel(void) { }
 int x;
 int y;
};

Syntax

result = cam.get_PixelMask(*vPixels);
 result = cam.put_PixelMask(vPixel);

result = cam.MaskPixels(true);

 62

Exceptions

Throws an exception if unsuccessful or if the camera is not connected.

Example

 bool enabled;

 std::vector<Pixel> map;

 // get old values to save

 cam.get_MaskPixels(&enabled);

 cam.get_PixelMask(&map);

 // create new settings

 std::vector<Pixel> newmap;

 newmap.push_back(Pixel(234,678));

 newmap.push_back(Pixel(233,244));

 cam.put_PixelMask(newmap);

 cam.put_MaskPixels(true);

 // Read back the new settings

 bool isenabled;

 std::vector<Pixel> checkmap;

 cam.get_MaskPixels(&isenabled);

 cam.get_PixelMask(&checkmap);

 std::cout << "Pixel mapping :" << isenabled << "\n";

 std::cout << "Pixels: \n";

 std::vector<Pixel>::iterator vi;

 for (vi = checkmap.begin(); vi != checkmap.end(); vi++)

 {

 std::cout << "(" << (*vi).x << "," << (*vi).y << ")\n";

 }

 // now reset to the orginal settings

 cam.put_PixelMask(map);

 cam.put_MaskPixels(enabled);

Remarks

The QSI camera driver provides the capability to individually mask pixels, replacing the ccd pixel value
with a fixed value of 200 ADU. This is intended to mask out hot pixels that may interfere with other post
processing activities, such as auto guiding. Pixels to be masked are identified by their un-binned x, y
location.

Use the GetPixelMask and SetPixelMask methods to read or update the pixel addresses to be masked.
Pixel addresses are expressed as un-binned x and y addresses, starting at (0,0). The x argument is a
SAFEARRAY of INT values that specifies the x location for each pixel. The nth entry of the array is the
x address of the nth pixel to mask. The same holds true for the y array. The x and the y arrays must
always be of the same size. Empty arrays are acceptable.

Use the MaskPixels property to enable or disable the post exposure masking of pixels.

The PixelMask array and the status of the MaskPixels properly are stored in the registry by the connected
camera serial number and are automatically restored each time the camera is opened.

If MaskPixels is enabled, each pixel listed in the PixelMask array is replaced with a fixed value, typically
200 ADU. The actual value used depends on the zero target for the camera as set by the camera’s
firmware. This value is 200 ADU on all QSI 500 series models.

 63

PixelSizeX

Property

int QSICamera.get_PixelSizeX (double*)

Syntax

result = cam.get_PixelSizeX(&x);

Exceptions

 If exceptions are enabled, throws exception if data unavailable.

Examples:

try

{

double x;

cam.get_PixelSizeX(&x);

}

catch (std::runtime_error& err){}

Remarks

Returns the width of the CCD chip pixels in microns in parameter 1, as provided by the camera driver.

 64

PixelSizeY

Property

int QSICamera.get_PixelSizeY (double*)

Syntax

result = cam.get_PixelSizeY(&y);

Exceptions

If exceptions are enabled, throws an exception if data unavailable.

Examples:

try

{

double y;

cam.get_PixelSizeY(&y);

}

catch (std::runtime_error& err) {}

Remarks

Returns the height of the CCD chip pixels in microns in parameter 1, as provided by the camera driver.

 65

PowerOfTwoBinning

Property

int QSICamera.get_PowerOfTwoBinning (bool*)

Syntax

result = cam.get_PowerOfTwoBinning(&p2bin);

Exceptions

None

Examples:

bool p2bin;

result = cam.get_PowerOfTwoBinning(&p2bin);

if (result ==0 && p2bin)

{

}

Remarks

If parameter 1 is true, the camera bins in powers of two. If false, the camera bins in increments of one.

 66

PreExposureFlush

Property

int QSICamera.put_PreExposureFlush (enum PreExposureFlush)

 int QSICamera.get_PreExposureFlush(enum PreExposureFlush *)

Syntax

int result = cam.put_PreExposureFlush(QSICamera::FlushNormal);

Exceptions

Throws an exception if the PreExposureFlush property is unsupported, if the camera is not
connected, or if the command is unsuccessful. This setting is stored in the .QSIConfig file and
will be maintained between camera connections.

Examples:

QSICamera cam;

//

// example with UseStructedExceptions == false

//

int result = cam.put_PreExposureFlush(QSICamera::FlushNormal);

if (result != 0)

{

//handle error//

}

Remarks

Controls the amount of pre-exposure flushing. Flushes any previously accumulated Dark Current
from the CCD imager.

None – No flushing performed. Image will contain any dark current that had accumulated since the
last exposure. This mode allows for the fastest back-to-back exposures.

The next 4 modes, Modest, Normal, Aggressive and Very Aggressive, provide increasingly higher
levels of flushing by employing a number of different strategies. Higher levels of flushing take more
time to execute.

For KAF based cameras the flush cycles for each setting are:

None no flush cycles
Modest one flush cycle
Normal two flush cycles
Aggressive four flush cycles
Very Aggressive eight flush cycles.

 67

Symbolic Constants

The symbolic values for PreExposureFlush are:

Constant enum Value

FlushNone 0

FlushModest 1

FlushNormal 2

FlushAggresive 3

FlushVeryAggressive 4

 68

ReadoutSpeed

Property

int QSICamera.put_ReadoutSpeed (enum)

int QSICamera.get_ReadoutSpeed (enum&)

Syntax

 result = cam.put_ReadoutSpeed(QSICamera::FastReadout);

Exceptions

If exceptions are enabled, throws an exception if unsuccessful or if camera does not support this feature.

Examples:

cam.put_ReadoutSpeed(QSICamera::FastReadout);

Remarks

Controls the readout speed of cameras that have read out speed control capability. Readout speed
selection is a tradeoff between high image quality and fast image readout and download. Typically
FastReadout is used during focusing and other setup operations and HighQualityImage is used during the
final image capture.

The connection to the camera must be in the “connected” state to change the readout speed.

ReadoutSpeed will return an error or throw an exception if this setting is not available on the connected
camera.

Enum for ReadoutSpeed, as defined in qsiapi.h:

 enum ReadoutSpeed

 {

 HighImageQuality = 0,

 FastReadout = 1

 };

 69

SelectCamera

Property

int QSICamera.put_SelectCamera (std::string)

 int QSICamera.get_ SelectCamera (std::string *)

Syntax

result = cam.put_ SelectCamera (“00502884”);

 result = cam.get_ SelectCamera (&camera);

Exceptions

.

Examples:

std::string camera;

int result;

result = cam.put_ SelectCamera (“00502884”);

result = cam.get_ SelectCamera (&camera);

Remarks

When multiple cameras are connected to the USB bus, this method selects which camera will be opened
by the put_Connected(true) method. The QSICamera object must be in the disconnected state to change
the camera selection, otherwise an exception will be thrown.

 70

SerialNumber

Property

int QSICamera.get_SerialNumber (std::string&)

Syntax

result = cam.get_SerialNumber(num);

Exceptions

If exceptions are enabled, throws an exception if description unavailable

Examples:

try

{

std::string num;

cam.get_SerialNumber(num);

}

catch (std::runtime_error& err) {}

Remarks

Returns the serial number of the camera in parameter 1.

 71

SetCCDTemperature

Property

int QSICamera.put_SetCCDTemperature (double)

int QSICamera.get_SetCCDTemperature (double*)

Syntax

result = cam.put_SetCCDTemperature (-10.0);

 result = cam.get_SetCCDTemperature(&temp);

Exceptions

If exceptions are enabled, throws an exception if command not successful. If exceptions are
enabled, throws an exception if CanSetCCDTemperature is false.

Examples:

try

{

double temp;

cam.get_SetCCDTemperature(&temp

 cam.put_SetCCDTemperature (10.0);

}

catch (std::runtime_error& err) {}

Remarks

The put_ method sets the camera cooler set-point in degrees Celsius in parameter 1, and the get_ method
returns the current set-point in parameter 1.

 72

ShutterMode

No longer supported. See ShutterPriority.

 73

ShutterPriority

Property

int QSICamera.put_ShutterPriority(enum ShutterPriority)

 int QSICamera.get_ShutterPriority(enum Shutter Priority *)

Syntax

int result =

cam.put_ShutterPriority(QSICamera::ShutterPriorityMechanical);

Exceptions

Throws an exception if the ShutterPriority property is unsupported, if the camera is not
connected, or if the command is unsuccessful. This setting is stored in the .QSIConfig file and
will be maintained between camera connections.

Examples:

QSICamera cam;

//

// example with UseStructedExceptions == false

//

int result =

cam.put_ShutterPriority(QSICamera::ShutterPriorityMechanical);

if (result != 0)

{

//handle error//

}

Remarks

Controls the shutter Priority in dual shutter cameras. Only enabled when the camera has a mechanical
shutter.

Mechanical – Shutter is closed between exposures and only opens for exposures that are taking an image,
i.e. closed for Darks and Bias images. This mode prevents the CCD imager from being flooded with light
in between exposures. This can reduce or eliminate ‘ghost’ or residual images when imaging bright
objects.

Electronic – Shutter is open between exposures and only closes when taking Darks and Bias images. This
mode allows the fastest back-to-back image exposures.

Symbolic Constants

The symbolic values for ShutterPriority are:

Constant Value

ShutterPriorityMechanical 0

ShutterPriorityElectronic 1

 74

SoundEnabled

Property

int QSICamera.put_SoundEnabled (bool)

int QSICamera.get_SoundEnabled (bool &)

Syntax

result = cam.put_SoundEnabled (true);

Exceptions

If exceptions are enabled, throws an exception if unsuccessful.

Examples:

bool enabled;

int results = cam.get_SoundEnabled(enabled);

if (enabled == false)

cam.put_SoundEnabled(true);

Remarks

Enable or disable the camera status beeper. The camera must be in the connected state. This setting is
recorded in the .QSIConfig file and will be maintained between connections to the device. This setting is
unique for each device serial number.

 75

StartX

Property

int QSICamera.put_StartX (long)

 int QSICamera.get_StartX(long*)

Syntax

result = cam.put_StartX (0);

 result = cam.get_StartX(&x);

Exceptions

None

Examples:

long x;

int result;

result = cam.get_StartX(&x);

result = cam.put_StartX (0);

Remarks

The put_ method sets the sub-frame start position for the X axis (0 based) in parameter 1. The get_
method returns the current value in parameter 1. If binning is active, value is in binned pixels.

 76

StartY

Property

int QSICamera.put_StartY(long)

 int QSICamera.get_StartY(long*)

Syntax

result = cam.put_StartY (0);

 result = cam.get_StartY(&y);

Exceptions

None

Examples:

long y;

int result;

result = cam.get_StartY(&y);

result = cam.put_StartY (0);

Remarks

The put_ method sets the sub-frame start position for the Y axis (0 based) in parameter 1. The set_
method returns the current value in parameter 1. If binning is active, value is in binned pixels.

 77

Camera Methods

AbortExposure

Method

int QSICamera.AbortExposure ()

Syntax

result = cam.AbortExposure ();

Parameters

None.

Returns

Nothing

Exceptions

If exceptions are enabled, throws an exception if camera is not idle and abort is unsuccessful (or
not possible, e.g. during download). If exceptions are enabled, throws an exception if hardware
or communications error occurs.

Examples:

try

{

cam.AbortExposure ();

}

catch (std::runtime_error& err)

{

}

Remarks

Aborts the current exposure, if any, and returns the camera to idle state.

 78

GetPixelMask / SetPixelMask

Method

CCDCamera.get_PixelMask(std::Vector<Pixel>* Pixels)
CCDCamera.put_PixelMask(std::Vector<Pixel> Pixels)

Syntax

 CCDCamera.get_PixelMask(&x, &y);
 CCDCamera.Sput_PixelMask(x, y);

Exceptions

Throws an exception if unsuccessful or if the camera is not connected.

Example:

C++:

 // Demonstrate Pixel masking

bool enabled;

 std::vector<Pixel> map;

 // get old values to save

 cam.get_MaskPixels(&enabled);

 cam.get_PixelMask(&map);

 // create new settings

 std::vector<Pixel> newmap;

 newmap.push_back(Pixel(234,678));

 newmap.push_back(Pixel(233,244));

 cam.put_PixelMask(newmap);

 cam.put_MaskPixels(true);

 // Read back the new settings

 bool isenabled;

 std::vector<Pixel> checkmap;

 cam.get_MaskPixels(&isenabled);

 cam.get_PixelMask(&checkmap);

 std::cout << "Pixel mapping :" << isenabled << "\n";

 std::cout << "Pixels: \n";

 std::vector<Pixel>::iterator vi;

 for (vi = checkmap.begin(); vi != checkmap.end(); vi++)

 {

 std::cout << "(" << (*vi).x << "," << (*vi).y << ")\n";

 }

 // now reset to the orginal settings

 cam.put_PixelMask(map);

 cam.put_MaskPixels(enabled);

Remarks

The QSI camera driver provides the capability to individually mask pixels, replacing the image pixel value
with a fixed value of 200 ADU. This is intended to mask out hot pixels that may interfere with other post

 79

processing activities, such as auto guiding. Pixels to be masked are identified by their un-binned x, y
location.

Use the GetPixelMask and SetPixelMask methods to read or update the pixel addresses to be masked.
Pixel addresses are expressed as un-binned x and y addresses of type Pixel, with addresses starting at
location (0,0).

Use the get_MaskPixels and set_MaskPixel property to enable or disable the post exposure masking of
pixels.

The PixelMask array and the status of the MaskPixels properly are stored in the registry by the connected
camera serial number and are automatically restored each time the camera is opened.

If MaskPixels is enabled, each pixel listed in the PixelMask array is replaced with a fixed value, typically
200 ADU. The actual value used depends on the zero target for the camera as set by the camera’s
firmware. This value is 200 ADU on all QSI 500 series models.

 80

PulseGuide

Method

 int QSICamera.PulseGuide (QSICamera;:GuideDirections, long)

Syntax

result = cam.PulseGuide (QSICamera;:guideNorth, 10);

Parameters

GuideDirections Direction - direction in which the guide-rate motion is to be made

long Duration - Duration of the guide-rate motion (milliseconds)

Returns

Nothing.

Exceptions

If exceptions are enabled, throws an exception if PulseGuide command is unsupported or the
command is unsuccessful.

Examples:

try

{

cam.PulseGuide (QSICamera::guideWest, 10);

}

catch (std::runtime_error& err)

{

}

Remarks

Use the IsPulseGuiding property to detect when all moves have completed.

Symbolic Constants

The (symbolic) values for GuideDirections are:

Constant Value Description

guideNorth 0 North (+ declination/elevation)

guideSouth 1 South (- declination/elevation)

guideEast 2 East (+ right ascension/azimuth)

guideWest 3 West (- right ascension/azimuth)

Note: directions are nominal and may depend on exact mount wiring.

 81

StartExposure

Method

int QSICamera.StartExposure (double Duration, bool Light)

Syntax

result = cam.StartExposure (0.50, true);

Parameters

double Duration - Duration of exposure in seconds

bool Light - true for light frame, false for dark frame (ignored if no shutter)

Returns

Nothing.

Exceptions

If exceptions are enabled, throws an exception if NumX, NumY, XBin, YBin, StartX, StartY,
or Duration parameters are invalid. If exceptions are enabled, throws an exception if
CanAsymmetricBin is False and BinX <> BinY Also, if exceptions are enabled, throws an
exception if the exposure cannot be started for any reason, such as a hardware or
communications error.

Examples:

try

{

cam.StartExposure(1.00, true);

}

catch (std::runtime_error& err)

{

}

Remarks

Starts an exposure. You must use get_ImageReady to check when the exposure is complete.

 82

StopExposure

Method

QSICamera.StopExposure ()

Syntax

result = cam.StopExposure ();

Parameters

None.

Returns

Nothing.

Exceptions

Throws an exception if CanStopExposure is false. Throws an exception if no exposure is in
progress. Also throws an exception if the camera or link has an error condition. Throws an
exception if for any reason no image readout will be available.

Examples:

try

{

bool canStop;

cam.get_CanStopExposure(&canStop);

if (canStop)

cam.StopExposure ();

}

catch (std::runtime_error& err){}

Remarks

Stops the current exposure, if any. If an exposure is in progress, the readout process is initiated. The user
must issue a get_ImageArray to transfer the pending image from the camera.

 83

External Trigger Input

Methods

QSICamera.EnableTriggerMode(TriggerModeEnum, TriggerPolarityEnum)
QSICamera.TerminatePendingTrigger(void)
QSICamera.CancelTriggerMode(void)

enum TriggerModeEnum_t
{
 ShortWait = 4,
 LongWait = 6
} TriggerModeEnum;

enum TriggerPolarityEnum_t
{
 HighToLow = 0,
 LowToHigh = 1
} TriggerPolarityEnum;

Syntax

result = cam.SetTriggerMode(LongWait, HighToLow);
result = cam.TerminatePendingTrigger();
result = cam.CancelTriggerMode();

Exceptions

Throws an exception if unsupported, unsuccessful, or if the camera is not connected.

Example:

#include "qsiapi.h"

#include <stdio.h>

#include <unistd.h>

#include <iostream>

#include <cmath>

#include <stdlib.h>

int main(int argc, char** argv)

{

QSICamera cam;

try

{

cam.put_UseStructuredExceptions(true);

cam.put_Connected(true);

}

catch (std::runtime_error err)

{

exit(1);

}

///

// Short Wait Trigger Mode

 84

///

// Set Short Wait Ext Trigger (4 seconds max), Pos to Neg polarity

///

cam.EnableTriggerMode(QSICamera::ShortWait,QSICamera::HighTo

Low);

bool imageReady = false;

try

{

cam.StartExposure(0.3, true);

// Short wait, so this will return

// with an image, or will timeout

cam.get_ImageReady(&imageReady);

while (!imageReady)

{

sleep(1);

cam.get_ImageReady(&imageReady);

}

long x;

cam.get_NumX(&x);

long y;

cam.get_NumY(&y);

long len = x * y;

unsigned short * pixels = new unsigned short[len];

cam.get_ImageArray(pixels);

//Process image

//Then clean up

delete [] pixels;

}

catch (std::runtime_error err)

{

// Timeout comes here

}

// turn off external trigger mode

cam.CancelTriggerMode();

//

// Long Wait Trigger Mode

//

cam.EnableTriggerMode(QSICamera::LongWait,

 QSICamera::LowToHigh);

try

{

// Start a long wait exposure

cam.StartExposure(0.3, true);

// Sleep for 5 seconds as a demo

sleep(5);

// Demo cancelling of the pending trigger

// This would not normally be done...

cam.TerminatePendingTrigger();

}

catch (std::runtime_error err)

{

 exit(1);

}

// Start a new exposure with long wait trigger.

//Note that the trigger mode remains

 85

//in effect until canceled.

try

{

cam.StartExposure(0.3, true);

cam.get_ImageReady(&imageReady);

while (!imageReady)

{

sleep(1);

 cam.get_ImageReady(&imageReady);

}

long x;

cam.get_NumX(&x);

long y;

 cam.get_NumY(&y);

long len = x * y;

unsigned short * pixels = new unsigned short[len];

cam.get_ImageArray(pixels);

// Process image here

 // Then clean up

 delete [] pixels;

}

catch (std::runtime_error err)

{

 exit(1);

}

///

// Cancel Trigger Mode

///

cam.CancelTriggerMode();

cam.put_Connected(false);

}

Remarks

Introduction:

The External Trigger Input is used to configure the camera to trigger exposures using an externally
generated electronic signal.

Some QSI camera models support electronic input trigger through the opto-isolated signals on the
control port. The camera is placed into ExternalTriggerMode with the ExternalTriggerMode method.
The first parameter selects short or long wait mode, and the second parameter specifies the polarity of the
trigger pulse that will fire the shutter. Shutter open timing is controlled by the StartExposure command.

When the camera first receives a StartExposure command and when in the External Trigger mode, a
number of operations must be performed. Two of these operations can take a sizable amount of time to
complete.

 CCD Imager Flush - QSI cameras have numerous flushing modes, from None to Very
Aggressive. This can insert up to 1000 msec of delay from the receipt of the Start Exposure
command and the camera becoming Armed and ready to receive an External Trigger.

 86

Additionally, camera models with smaller sensors (e.g. KAI-2020 vs KAI-04022) flush faster
due to the smaller image array. Use a less aggressive flush for the shortest latency.

 Mechanical Shutter - If the camera is equipped with a mechanical shutter and it is closed at the
time of the receipt of the StartExposure command, the shutter must be opened this can take as
much as 200msec depending on the beginning shutter state.

Consequently, the time to arm the camera is not a fixed value. Ordinarily, the device generating the
external trigger should validate the CameraArmed output from the camera before allowing an
ExternalTrigger input to be sent. If the trigger arrives before the camera is armed, then the camera will
immediately trigger as soon as it enters the armed state.

As soon as the camera is triggered, the CameraArmed output is returned to the unarmed state by the
camera.

Electrical Interface:

On the control port RJ-11 connector, pin 6 is the trigger signal input (3.3V LVCMOS, +5V maximum
input @30mA) and pin 5 is the common ground return. Minimum trigger pulse length is 30µs in short
wait mode and 10ms in long wait mode (see below for an explanation of short and long wait modes).

When armed, the CameraArmed output (pin 3 of the control port) will be pulled down to the local
ground level (pin 5) via an opto-isolator output. The opto-isolator outputs require positive signals relative
to ground and are limited to 60V Vce, 60mA Ice. Vcesat is approximately 1V @ 2mA with maximum
dissipation of 150mW.

Due to the nature of the opto-isolator trigger electronics, the low-to-high transition mode triggers the
exposure with less latency compared to the high-to-low transition mode. Typical 3.3Vtrigger times (in
Short Wait mode) are between 5µs and 11µs when using low-to-high triggering and between 20µs and
28µs when using high-to-low triggering.

The Control port schematic for QSI cameras with external trigger control is shown below.

Note: Specific parts numbers are subject to change without notice.

Programming the ExternalTriggerMode:

 87

To initiate an exposure using the External Trigger Input, execute the EnableTriggerMode method,
selecting the mode and polarity desired. The camera will remain in the selected external trigger mode
until the mode is cancelled using the CancelExternalTrigger() method. On initial connection of the API
to the camera, the external trigger mode always resets to the disabled state.

Once in the external trigger mode, exposures are taken in the normal API programming sequence, ie:

StartExposure(),

Loop unitl ImageReady is true,

Retrieve image using the ImageArray property.

The camera will pause during or after the StartExposure (depending on the wait mode) and will wait for
the external trigger signal before firing the shutter and completing the exposure process. A pending long
wait mode exposure may be cancelled by issuing the TerminatePendingExposure() method. A short wait
exposure occurs during the StartExposure method and therefore cannot be cancelled. It will either
complete with a trigger, or timeout.

The EnableTriggerMode has two modes of operation:

ShortWait – ShortWait mode provides the shortest latency and highest repeatability between the trigger
transition and the start of the exposure. ShortWait mode is only available on supported camera models
with interline transfer sensors, such as the KAI-2020 and the KAI-04022. In ShortWait mode,
background processing in the camera (e.g. processing get temperature requests from the host) is
suspended while waiting for the trigger. The maximum length of “Short” mode is 4 seconds.

If no trigger is received during the timeout period, (maximum 4 seconds) the camera reports an error to
the API and an exception is thrown in the API. Maximum latency between receiving the Input Trigger
and beginning the exposure in ShortWait mode is 10µs. A short wait occurs DURING the
StartExposure method and that method will not return to the user until (1) the trigger is fired, or (2) the 4
seconds timeout elapses and the exception is thrown.

The calling program should always surround the StartExposure with a try/catch block to catch the
timeout condition. If the timeout error is thrown, the calling application should not attempt to retrieve an
image, as there will be none available. No further action is required before the next exposure may be
attempted.

LongWait – LongWait mode has higher latency than ShortWait mode but allows the camera to wait for
the Input Trigger indefinitely. Maximum latency between receiving the Input Trigger and beginning the
exposure in LongWait varies depending on the camera model and whether a mechanical shutter is being
used to time the exposure. With interline transfer sensors, the maximum latency is LongWait mode
mode is 5ms. With full-frame sensors which utilize the mechanical shutter, maximum latency before the
exposure begins is variable up to 600ms depending on shutter latencies.

Once the camera is in LongWait mode, the calling program should issue a StartExposure and then poll
the camera status waiting for the ImageReady property to come true. The calling API may also poll for
camera temperature during this wait loop. Other than CancelTriggerMode, no other commands may be
issued to the camera until the exposure completes, or is canceled by the calling program.

When the external trigger is triggered, the camera will perform the selected preexposure flush, fire the
shutter, complete the exposure, and set ImageReady true. The application can then retrieve an image
using the ImageArray property as usual. The camera will stay in LongWait mode for each subsequent
exposure until explicitly canceled by the CancelTriggerMode() method, or when the camera is re-
connected by the API.

 88

In LongWait mode, it is up to the calling application to time out the exposure request if desired.
Following a StartExposure in long wait mode, the exposure may be cancelled by calling the
TerminatePendingExposure method. No further action is required before the next exposure may be
attempted.

If the TerminatePendingExposure command arrives at the camera just after an exposure triggered, the
camera will necessarily complete timing of the current exposure. If the exposure shutter time is greater
than 0.2 seconds, the caller may issue an AbortExposure to prematurely complete the shutter timing. A
new exposure may be started without reading out the image.

 89

Filter Wheel Properties

FilterCount

Property

int QSICamera.get_FilterCount (int*)

Syntax

int results = cam.get_FilterCount(&fc);

Exceptions

If exceptions are enabled, throws an exception if data unavailable.

Examples:

try

{

double fc;

cam.get_FilterCount(&fc);

}

catch (std::runtime_error& err)

{

// Filter count not available from this device

}

Remarks

Returns the number of positions in the filter wheel (both empty and occupied) in parameter 1.

 90

Names

Property

int QSICamera.put_Names(std::string[])

int QSICamera.get_Names (std::string[])

Syntax

result = cam.get_Names(names);

result = cam.put_Names (names);

Exceptions

Examples:

int result;

int num;

try

{

cam.get_FilterCount(&num);

std::string names[num];

cam.get_Names(names);

names[1] = “UV”;

cam.put_Names(names);

}

catch (std::runtime_error err) {}

Remarks

For each valid slot number (from 0 to N-1), reports the name given to the filter position in parameter 1.

 91

Position

Property

int QSICamera.put_Position (short)

 int QSICamera.get_Position(short*)

Syntax

result = cam.put_Position (0);

 result = cam.get_Position(&pos);

Exceptions

.

Examples:

short pos;

int result;

result = cam.put_Position(2);

result = cam.get_Position(&pos);

Remarks

Write number between 0 and N-1, where N is the number of filter slots in parameter 1. Starts filter wheel
rotation immediately when called. Reading the property gives current slot number (if wheel stationary) or
-1 if wheel is moving in parameter 1.

 92

FocusOffset

Property

int QSICamera.putFocusOffset(long[])

int QSICamera.get_FocusOffset(long[])

Syntax

result = cam.put_FocusOffset(offsets);

result = cam.get_FocusOffset(offsets);

Exceptions

Examples:

int result;

int num;

try

{

cam.get_FilterCount(&num);

long offsets[num];

cam.get_FocusOffset(offsets);

offsets[1] = 100L;

cam.put_FocusOffset(offsets);

}

catch (std::runtime_error err) {}

Remarks

For each valid slot number (from 0 to N-1), reports the focus offset for the given filter position in
parameter 1.

93

Appendix A

Notes on usb raw device permissions:

**

* From Linux libusb mailing list *

**

Linux specific installation information

=======================================

Since libusb is accessing the raw device nodes exported by the kernel

in order to identify connected USB busses, functions and such, it

needs to find these nodes. During the history of the Linux kernel,

the placement and the way of accessing these nodes have changed.

This placement is closely related to hotplugging: i.e. addition and

removal of USB functions at runtime.

Most current solution: use udev

===============================

The latest and greatest way of managing hotplugged (and cold-plugged)

devices under Linux is called "udev". This is a development of the

older "hotplug" system (see below).

When a device is connected, the kernel will call the program

/sbin/udev in order to create a device node in the /dev/ file

hirerarchy. It will also remove devices from this hierarchy when

they are unplugged.

Traditionally, all devices plugged into a Linux system are expected

to have a kernel device driver, or to load one on-the-fly when a

new device is connected. Libusb cannot use these device drivers,

instead it attempts to access the raw device nodes from user mode,

not as a kernel module.

In order for libusb to find the device node, it needs to locate it

in the /dev filesystem. The recommended way to let udev create nodes

in the /dev filesystem is to add a udev rule like the following into

some foo.rules file inside the /etc/udev/rules.d/ directory:

usbfs-like devices

SUBSYSTEM=="usb_device", PROGRAM="/bin/sh -c 'K=%k; K=$${K#usbdev}; \

printf bus/usb/%%03i/%%03i $${K%%%%.*} $${K#*.}'", \

NAME="%c"

This layout is used by for example the Debian distribution. This

rule creates a device tree identical to the earlier /proc/bus/usb/

tree, but under /dev/bus/usb/ instead. If this device tree exists,

libusb will default to use it. It will look like this:

94

/dev

/bus

 /usb

 /001

 /001

 /002

 /003

 /002

 /001

 /002

 ...

However notice that the permissions on the nodes will be default

permissions: often this means they are only accessible for writing

by the root user, whereas non-root users often can access it

read-only.

The way of controlling access to a device node differs between

systems, but a typical way of complementing udev rules with

apropriate permissions is to use PAM (pluggable Authentication

Modules), with some sort of configuration under /etc/security/.

The use of /dev nodes is also different from the old usbfs

solution in that it enables the use of ACL:s (Access Control

Lists) to control acces for the USB device nodes.

A less good alternative that may however be useful for debugging

would be to supply the argument MODE="666" to the above udev

rule, or, slightly better, to tag on:

MODE="660", GROUP="foo"

where "foo" is a group of users (e.g. desktop users) that need

to access the device in read/write mode.

If libusb cannot find a device hierarchy below /dev/bus/usb/

(as is the case if you are not using udev, or not using it with

the above rule), it will fall back on using /proc/bus/usb/

instead.

Additionally, you may want to trigger unique actions for your

device at the same time. To do this, create a rules file

/etc/udev/rules.d/bar.rules with these lines:

SUBSYSTEM=="usb_device", ACTION=="add", SYSFS{idVendor}=="1234", \

SYSFS{idProduct}=="4321"

At the end of this line you can then tag on any device-specific

actions for device 1234/4321, for example:

MODE="660", GROUP="baz" to set mode and group

RUN="/usr/local/bin/baz" to run a script on plug-in

SYMLINK+="foo" to create a symlink device node with

 this name in /dev

You can read more about udev in its own documentation.

95

Previous solution: use hotplug

==============================

Before udev another system, generally considered less elegant,

known simply as "hotplug" was used. In this case the program

/sbin/hotplug would be called whenever devices were connected

or removed from the system, and the corresponding configuration

lives in /etc/hotplug/.

With hotplug not using udev at the same time, all devices are

accessed using the usbfs hierarchy below /proc/bus/usb/. Again,

this will be used by libusb, since libusb does not use any device

drivers. The hierarchy will look like this:

/proc

/bus

 /usb

 /001

 /001

 /002

 /003

 /002

 /001

 /002

 ...

When USB devices are plugged in, their corresponding device

node is created in /proc/bus/usb/ by the kernel, without any

external program intervention (as is the case with udev).

However, to correct the permissions on these device nodes, if

your device requires anything else than read access, you need

to supply a script in /etc/hotplug/usb/ that detects your

device and change its permissions, for example this

/etc/hotplug/usb/foo.usermap

Foo device with VID=1234 and PID=4321

bar 0x0003 0x1234 0x4321 0x0000 0x0000 0x00 0x00 0x00 0x00 0x00 0x00 0x00000000

(All this need to be in one line.)

The first string "bar" points out the name of a script placed

in /etc/hotplug/usb/bar, with for example the following contents:

#!/bin/bash

if ["${ACTION}" = "add"] && [-f "${DEVICE}"]

then

chgrp baz "${DEVICE}"

chmod 660 "${DEVICE}"

fi

to let users in the group "baz" access the device for reading

and writing.

96

You can read more about hotplug and its usermaps in the

hotplug documentation.

**

* End of the post from the Linux libusb mailing list

For example, to give rw access rights to all users for all QSI USB cameras in Fedora 6:

In the file /etc/udev/rules.d/50-udev-rules,

after:
 "Persistent block device stuff - end"
and before:
ACTION="add", SUBSYSTEM='usb_device'...

Add the following lines:
ACTION="add", SUBSYSTEM='usb_device', \
SYSFS{idVendor}=="0403", SYSFS{idProduct}=="eb48", \
PROGRAM="/bin/sh -c 'K=%k; K=$${K#usbdev}; printf bus/usb/%%03i/%%03i $${K%%%%.*} $${K#*.}' ", \
NAME="%c", MODE="0666"

ACTION="add", SUBSYSTEM='usb_device', \
SYSFS{idVendor}=="0403", SYSFS{idProduct}=="eb49", \
PROGRAM="/bin/sh -c 'K=%k; K=$${K#usbdev}; printf bus/usb/%%03i/%%03i $${K%%%%.*} $${K#*.}' ", \
NAME="%c", MODE="0666"

In Fedora 9, in the directory /etc/udev/rules.d , create a file named “99-qsi.rules” and add the

following text to that file:

SUBSYSTEM=="usb", DEVTYPE=="usb_device", \

SYSFS{idVendor}=="0403", SYSFS{idProduct}=="eb48", MODE="0666"

SUBSYSTEM=="usb", DEVTYPE=="usb_device", \
SYSFS{idVendor}=="0403", SYSFS{idProduct}=="eb49", MODE="0666"

In Fedora 11 – 14, in the directory /etc/udev/rules.d , create a file named “99-qsi.rules” and add the

following text to that file:

SUBSYSTEM=="usb", \

SYSFS{idVendor}=="0403", SYSFS{idProduct}=="eb48", MODE="0666"

SUBSYSTEM=="usb", \
SYSFS{idVendor}=="0403", SYSFS{idProduct}=="eb49", MODE="0666"

97

In Ubuntu 6:

In the file /etc/udev/rules.d/40-permisssions.rules

after:
#USB devices (usbfs replacement)
SUBSYSTEM=”usb_device”, MODE=”0664”

Add the following lines:
SUBSYSTEM=”usb_device”, SYSFS{idVendor}==”0403”, SYSFS{idProduct}== “eb48”, MODE=”0666”
SUBSYSTEM=”usb_device”, SYSFS{idVendor}==”0403”, SYSFS{idProduct}== “eb49”, MODE=”0666”

98

Index

AbortExposure, 9, 77

AntiBlooming, 9, 10

API, 7

BinX, 9, 11

BinY, 9, 12

C#, 54, 78

CameraGain, 9, 13, 66

CameraState, 9, 14

CameraXSize, 9, 15

CameraYSize, 9, 16

CanAbortExposure, 9, 17

CanAsymmetricBin, 9, 18, 22

CancelTriggerMode, 83

CanGetCoolerPower, 9, 19

CanPulseGuide, 9, 20

CanSetCCDTemperature, 9, 21

CanSetGain, 22

CanStopExposure, 9, 23

CCD, 63, 64

CCDCamera, 45, 48, 49, 54, 61, 78

CCDTemperature, 9, 24

Connected, 9, 25, 31

CoolerOn, 9, 26

CoolerPower, 9, 27

DeleteFilterWheel, 57, 58

Description, 9, 10, 13, 28, 67, 73

DriverInfo, 9, 29

ElectronsPerADU, 9, 30

EnableShutterStatusOutput, 9, 31

External Trigger Input, 83

FanMode, 9, 32

Filter Wheels, 7

FilterCount, 9, 89, 90, 92

FilterOffsets, 9

FilterPositionTrim, 57, 58

FilterWheelNames, 57, 58

FlushCycles, 9, 33

FullWellCapacity, 9, 34

GetPixelMask, 61, 78

HasFilterWheel, 9, 35

HasFilterWheelTrim, 57, 58

HasShutter, 9, 36

HeatSinkTemperature, 9, 37

HostTimedExposure, 9, 38

ImageArray, 9, 39, 40

ImageArrayVariant, 9

ImageReady, 9, 41

IsPulseGuiding, 9, 42, 43

LastError, 9, 44

LastExposureDuration, 9, 45

LastExposureStartTime, 9, 46

LEDEnabled, 9, 47, 48, 49, 68

ManualShutterMode, 48

MaskPixels, 61, 62, 78, 79

MaxADU, 9, 50

MaxBinX, 9, 51

MaxBinY, 9, 52

MaxExposureTime, 53

MinExposureTime, 54

ModelNumber, 9, 55

Name, 9, 56, 57

Named Filter Wheels, 9

Names, 9, 90

NewFilterWheel, 57, 58

NumX, 9, 59

NumY, 9, 60

Pixel, 61, 62, 78, 79

PixelMask, 9, 61, 62, 78, 79

PixelSizeX, 9, 63

PixelSizeY, 9, 64

Position, 91

PowerOfTwoBinning, 9, 65

PreExposureFlush, 9, 66

PulseGuide, 9, 48, 49, 80

ReadoutSpeed, 68

SelectCamera, 9, 69

SelectedFilterWheel, 9, 57, 58

SerialNumber, 9, 70

SetCCDTemperature, 9, 71

SetPixelMask, 61, 78

SetTriggerMode, 83

ShutterMode, 49, 72

ShutterPriority, 9, 38, 72, 73

SoundEnabled, 74

StartExposure, 9, 81

StartX, 9, 75

StartY, 9, 76

StopExposure, 9, 82

TerminatePendingTrigger, 83

TriggerModeEnum, 83

TriggerPolarityEnum, 83

UseStructuredExceptions, 9

99

Notes

